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Digraphs, homomorphisms and polymorphisms

Definition

A digraph is a pair G = (G ;→), where G is the set of vertices and
→ ⊆ G 2 is the set of edges.

Definition

A homomorphism from G to H is a map f : G → H that preserves edges:

a→ b in G =⇒ f (a)→ f (b) in H.

Definition

A polymorphism of G is a homomorphism p : Gn → G, that is, it
preserves edges:

a1 → b1, . . . , an → bn =⇒ p(a1, . . . , an)→ p(b1, . . . , bn).

Pol(G) = { p | p : Gn → G } is the clone of polymorphisms.
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Maltsev implies majority

Theorem (A. Kazda)

If a finite digraph has Maltsev polymorphism p(x , y , y) = p(y , y , x) = x,
then it has a majority polymorphism
m(y , x , x) = m(x , y , x) = m(x , x , y) = x.

Not true for finite relational structures.

Theorem (E. Aichinger, R. McKenzie, P. Mayer)

Every algebra with an edge-term is finitely related

p(y , y , x , x , . . . , x) ≈ x ,

p(x , y , y , x , . . . , x) ≈ x ,

p(x , x , x , y , . . . , x) ≈ x ,

...

p(x , x , x , x , . . . , y) ≈ x .
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Jónsson implies near-unanimity

Theorem (L. Barto)

If a finite relational structure has Jónsson polymorphisms

x = d0(x , y , z),

di (x , y , x) = x for all i ,

di (x , y , y) = di+1(x , y , y) for even i ,

di (x , x , y) = di+1(x , x , y) for odd i ,

dn(x , y , z) = z ,

then it has a near-unanimity polymorphism

t(y , x , . . . , x) = t(x , . . . , x , y) = x .

Valeriote’s Conjecture

If a finite relational structure has Gumm polymorphisms, then it has an
edge polymorphism.
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Structure and Maltsev conditions

Theorem (L. Barto, M. Kozik)

If G = (G ; E ) is connected, E ≤ G 2 is subdirect (smooth digraph), the
algebraic length of G is 1, and it has a weak near-unanimity
polymorphism, then G contains a loop.

Theorem (B. Larose, L. Zádori)

If a finite poset has Gumm polymorphisms

x = d0(x , y , z),

di (x , y , x) = x for all i ,

di (x , y , y) = di+1(x , y , y) for even i ,

di (x , x , y) = di+1(x , x , y) for odd i ,

dn(x , y , y) = p(x , y , y), and

p(x , x , y) = y ,

then it has a near-unanimity polymorphism.
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Reflexivity and Gumm implies near-unanimity

Theorem (B. Larose, C. Loten, L. Zádori)

If a finite symmetric reflexive digraph has Gumm polymorphisms, then it
has a near-unanimity polymorphism.

Theorem

If a finite reflexive digraph G has Gumm polymorphisms then it has
Jónsson (and near-unanimity) polymorphisms, and totally symmetric
polymorphisms

{a1, . . . , an} = {b1, . . . , bn} =⇒ t(a1, . . . , an) = t(b1, . . . , bn)

of all arities.

Theorem

If a finite symmetric digraph G has Gumm polymorphisms then it has
Jónsson (and near-unanimity) polymorphisms.
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Structure on GH

Definition

Let G, H be digraphs and f , g ∈ HG be maps. We write f → g iff

a→ b in G =⇒ f (a)→ g(b) in H.

Lemma

The set of homomorphisms from G to H is

HG = { f ∈ HG | f → f }.

If G is reflexive, then the Cartesian power of G is

Gn = G{	 	 ··· 	}.

If f → g in HGn
and f1 → g1, . . . , fn → gn in GF, then

f (f1, . . . , fn)→ g(g1, . . . gn) in HF.
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Connectedness on GG

Theorem

Let G be a finite reflexive digraph admitting Gumm operations. If G is
[strongly] connected, then so is GG.

Proof.

Take a minimal counterexample G.

{id} is a [strong] component of GG.

If G admits a ternary operation d satisfying

d(x , y , y) ≈ x , or
d(x , y , x) ≈ d(x , x , y) ≈ x ,

then d(x , y , z) is the first projection.

Use the Gumm identities (or Hobby-McKenzie operations for omitting
types 1 and 5) to show that G satisfies x ≈ y .
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Nonreflexive digraphs

Example

The following digraph has Maltsev, join and meet semilattice
polymorphisms.

1

a b

0

It has only four endomorphisms: id, 0, 1 and inversion, they are all
isolated. However, id is connected to 0 among all maps from G to G :

id = x ∧ 1→ x ∧ a→ x ∧ 0 = 0.
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Twin polynomials and connectedness on GG

Definition

Let A be an algebra. Two unary polynomials p, q ∈ Pol1(A) are twins if
there exist a term t of arity n + 1 and constants ā, b̄ ∈ An such that

p = t(x , ā) and q = t(x , b̄).

Let ∼ denote the congruence relation on Pol1(A) that is the transitive
closure of twin polynomials.

Theorem

If a finite algebra A has Jónsson terms, then id ∼ a for a ∈ A.

Corollary

If a strongly connected [connected and smooth] finite digraph G has
algebraic length 1 and has Jónsson polymorphisms, then GG is strongly
connected [connected].
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Algebraic length 1 and Gumm polymorphisms

Lemma

If G is a digraph and GG is strongly connected, then G has a loop.

Proof.

Take id→ f1 → · · · → fk = c → · · · → fn → id, then
id ◦ f1 ◦ · · · ◦ fn → f1 ◦ · · · ◦ fn ◦ id, thus g = f1 ◦ · · · ◦ fn is a constant
endomorphism of G.

Theorem

If a strongly connected finite digraph G has algebraic length 1 and has
Gumm polymorphisms, then GG is strongly connected.

Conjecture

If a connected and smooth finite digraph has algebraic length 1 and has
Gumm polymorphisms, then it has a near-unanimity polymorphism.
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Thank you!
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